The Carnot cycle tells us that any system that loses heat also loses entropy. When entropy is low and symmetries are present, binding takes place. Parts of the system bind together in a permanent manner. We don't know which parts will bind, but we can calculate them using the causal set model. Binding leads to the formation of permanent structures, known as invariants. While everything else keeps changing because of the active CML algorithm, the invariant structures remain fixed and do not change. This is the process of self-organization: as we remove heat from the system's model, the causal set, its entropy drops and the system suddenly and unexpectedly self-organizes. Because the structures do not change, we can observe them, measure them, make them part of our physical world and use them to build our understanding of the behavior of the system. By including them in our mental process we attach a meaning to them. The expression "invariants with a physical meaning" is well known in..
  • 0
  • 0
Interest Score
1
HIT Score
0.50
Domain
scicontrols.com

Actual
sergio.pissanetzky.com

IP
205.196.210.2

Status
OK

Category
Other
0 comments Add a comment