NOA MAROM

Updated 55 days ago
  • ID: 29742229/105
Through the portal of computer simulations we gain access to the vast configuration space of materials structure and composition. We can explore the uncharted territories of materials that have not been synthesized yet and predict their properties from first principles, based solely on the knowledge of their elemental composition and the laws of quantum mechanics. Since the Schrödinger equation can be solved exactly only for very small systems (=the hydrogen atom), we employ approximate methods within the framework of density functional theory (DFT) and many-body perturbation theory (MBPT) to apply quantum mechanics to systems, such as molecular crystals and interfaces, with up to several hundred atoms. The computational cost of quantum mechanical simulations increases rapidly with the accuracy of the method, the size of the system, and the number of trial structures sampled, therefore we run our calculations on some of the world's most powerful supercomputers... To navigate the..
Associated domains: noamarom.tulane.edu
  • 0
  • 0
Interest Score
2
HIT Score
0.64
Domain
noamarom.com

Actual
www.noamarom.com

IP
173.236.247.35

Status
OK

Category
Company, Other
0 comments Add a comment