Ever since the first microscope by Zacharias Janssen in the late 16th century, scientists have been inventing new types of microscopes for various tasks. Inventing a novel architecture demands years, if not decades, worth of scientific experience and creativity. In this work, we introduce Differentiable Microscopy (∂μ), a deep learning-based design paradigm, to aid scientists design new interpretable microscope architectures. Differentiable microscopy first models a common physics-based optical system however with trainable optical elements at key locations on the optical path. Using pre-acquired data, we then train the model end-to-end for a task of interest. The learnt design proposal can then be simplified by interpreting the learnt optical elements. As a first demonstration, based on the optical 4-f system, we present an all-optical quantitative phase microscope (QPM) design that requires no computational post-reconstruction. A follow-up literature survey suggested that the learnt..
  • 0
  • 0
Interest Score
1
HIT Score
0.00
Domain
udithhaputhanthri.github.io

Actual
udithhaputhanthri.github.io

IP
185.199.108.153, 185.199.109.153, 185.199.110.153, 185.199.111.153

Status
OK

Category
Company
0 comments Add a comment