FEATURE 3DGS

Updated 297 days ago
  • ID: 52842400/4
3D scene representations have gained immense popularity in recent years. Methods that use Neural Radiance fields are versatile for traditional tasks such as novel view synthesis. In recent times, some work has emerged that aims to extend the functionality of NeRF beyond view synthesis, for semantically aware tasks such as editing and segmentation using 3D feature field distillation from 2D foundation models. However, these methods have two major limitations: (a) they are limited by the rendering speed of NeRF pipelines, and (b) implicitly represented feature fields suffer from continuity artifacts reducing feature quality. Recently, 3D Gaussian Splatting has shown state-of-the-art performance on real-time radiance field rendering. In this work, we go one step further: in addition to radiance field rendering, we enable 3D Gaussian splatting on arbitrary-dimension semantic features via 2D foundation model distillation. This translation is not straightforward: naively incorporating..
  • 0
  • 0
Interest Score
1
HIT Score
0.00
Domain
feature-3dgs.github.io

Actual
feature-3dgs.github.io

IP
185.199.108.153, 185.199.109.153, 185.199.110.153, 185.199.111.153

Status
OK

Category
Company
0 comments Add a comment